Projections and planes
Question: Suppose we have a point P and a plane in \mathbb{R}^{3}. How do we find the point on the plane that is closest to P ?

Answer: Find the line L through P that is perpendicular to the plane, and find the point where L intersects the place.

In order to do this, it is helpful to use properties of the dot product:

The dot product + angles
Recall that the dot product of two vectors

$$
\begin{aligned}
& \vec{V}=\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right] \text { is defined } \\
& \vec{v} \cdot \vec{w}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} .
\end{aligned}
$$

Properties of the dot product:
Let \vec{u}, \vec{v}, and \vec{w} be vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}).
(1.) $\vec{v} \cdot \vec{w}$ is a real number (ie. a scalar).
(2.) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$.
(3.) $\vec{v} \cdot \overrightarrow{0}=0$
(4.) $\vec{V} \cdot \vec{V}=\|\vec{v}\|^{2}$
(5.) If k is a scalar, then $(k \vec{v}) \cdot \vec{w}=k(\vec{v} \cdot \vec{w})=\vec{v} \cdot(k \vec{w})$.
(6.) $\vec{u} \cdot(\vec{v}+\vec{w})=(\vec{u} \cdot \vec{v})+(\vec{u} \cdot \vec{w})$
(7.) If θ is the angle between \vec{V} and, \vec{w}, then

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

We can use property (7) to compute the angle between two vectors.

Ex: Let $\vec{u}=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$
Then $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$, so

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{-2+1-2}{(\sqrt{1+1+4})(\sqrt{4+1+1})}=\frac{-3}{6}=\frac{-1}{2}
$$

since $0 \leqslant \theta \leqslant \pi$, this means $\theta=\frac{2 \pi}{3}$.
How do we know?
equilateral:

Set side lengths to 2 ,

$$
\alpha=\pi / 3,
$$

Then $\cos \alpha=\frac{1}{2}$.

Notice that for \vec{V}, \vec{w} nonzero vectors, $\|\vec{v}\|$ and $\|\vec{w}\|$ are both positive, so $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta$ has The same sign as $\cos \theta$, so we get ${ }^{+}$the following:

$$
\left\{\begin{array}{l}
\cdot \vec{v} \cdot \vec{w}>0 \Leftrightarrow 0 \leqslant \theta<\frac{\pi}{2} \text {, i.e. } \theta \text { is acute } \\
\cdot \vec{v} \cdot \vec{w}=0 \Leftrightarrow \theta=\frac{\pi}{2}, \text { i.e. } \vec{v} \text { and } \vec{w} \text { are perpendicular } \\
\cdot \vec{v} \cdot \vec{w}<0 \Leftrightarrow \frac{\pi}{2}<\theta \leqslant \pi \text {, ie. } \theta \text { is obtuse }
\end{array}\right\}
$$

If $\vec{v} \cdot \vec{w}=\overrightarrow{0}$ we say that \vec{v} and \vec{w} are orthogonal, ie. if the angle between them is $\pi / 2$ or one of \vec{v} and \vec{w} is $\stackrel{\rightharpoonup}{0}$.

Projections
It's often useful to be able to write a vector as the sum of two orthogonal vectors.

Ex: A 10 lb block is on a frictionless 30° ramp. How much force is needed to keep the block from sliding?
$\quad \vec{w}=$ force due to gravity, so $\|\vec{w}\|=10$.
We con write $\vec{w}=\vec{w}_{1}+\vec{w}_{2}$ and find $\left\|\vec{w}_{1}\right\|$.

$$
\begin{aligned}
& \frac{\|\vec{w},\|}{\|\vec{w}\|}=\sin 30^{\circ}=\frac{1}{2} \\
\Rightarrow & \left\|\vec{w}_{1}\right\|=\frac{1}{2}\|\vec{w}\|=\frac{1}{2} 10=5
\end{aligned}
$$

So 5 lbs of force up the ramp are heeded in order to keep the block from moving.

More generally:
If \vec{d} is a nonzero vector and \vec{u} an arbitrary vector, we want to find the projection of \vec{u} onto \vec{d}. That is, we heed

$$
\vec{u}=\vec{u}_{1}+\vec{u}_{2}
$$

where \vec{u}_{1} is parallel to \vec{d} and \vec{u}_{2} is orthogonal to \vec{u}_{1}. In this case, \vec{u}_{1} is called the projection of \vec{u} onto \vec{d}, denoted $u_{1}=\operatorname{prog} \vec{d} \vec{u}$.

Note: - \vec{u}_{1} may point the opposite direction from \vec{d}.

$\vec{u}_{1}=\overrightarrow{0}$ if and only if \vec{d} and \vec{u} are orthogonal.
How to calculate $\vec{u}_{1}=\operatorname{proj}_{\vec{d}} \vec{u}$?
We know that \vec{u}_{1} is parallel to \vec{d}, so

$$
\vec{u}_{1}=t \vec{d} \text {, some scalar } t
$$

We also know that $\vec{u}_{2}=\vec{u}-\vec{u}_{1}=\vec{u}-t \vec{d}$ is perpendicular to \vec{d}, so

$$
\begin{aligned}
& 0=(\vec{u}-t \vec{d}) \cdot \vec{d}=\vec{u} \cdot \vec{d}-t \vec{d} \cdot \vec{d}=\vec{u} \cdot \vec{d}-t\|\vec{d}\|^{2} \\
& \Rightarrow t \mid \vec{d} \|^{2}=\vec{u} \cdot \vec{d} \\
& \\
& \Rightarrow t=\frac{\vec{u} \cdot \vec{d}}{\|\vec{d}\|^{2}}
\end{aligned}
$$

Thus, we've shown that

$$
\operatorname{proj}_{\vec{d}} \vec{u}=\underbrace{\left(\frac{\vec{u} \cdot \vec{d}}{\|\vec{d}\|^{2}}\right)}_{\text {scalar }} \stackrel{\rightharpoonup}{d}
$$

Ex: What is the projection of $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$ onto $\vec{d}=\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$?

$$
\vec{u}_{1}=p \operatorname{roj}_{\vec{d}} \vec{u}=\left(\frac{-1+0+8}{1+0+4}\right)\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]=\frac{7}{5}\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]
$$

Thus,

$$
\begin{aligned}
\vec{u}_{2}=\vec{u}-\vec{u}_{1} & =\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]-\frac{7}{5}\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] \\
& =\frac{5}{5}\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]-\frac{7}{5}\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] \\
& =\frac{1}{5}\left(\left[\begin{array}{l}
5 \\
10 \\
20
\end{array}\right]-\left[\begin{array}{c}
-7 \\
0 \\
14
\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{c}
12 \\
10 \\
6
\end{array}\right]
\end{aligned}
$$

So $\quad \vec{u}=\vec{u}_{1}+\vec{u}_{2}$

Ex: What is the shortest distance from the point

$$
Q=(1,3,-2)
$$

to the line $w /$ vector equation $\vec{p}=\left[\begin{array}{c}2 \\ 0 \\ -1 \\ 1\end{array}\right]+t\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$?

$$
P_{0}
$$

direction $=\vec{d}$
P_{0} is a point on the line, so we are looking for \vec{u}, in the direction of the line (i.e. parallel to $\vec{d})$ so that $\vec{u}_{2}=\vec{P}_{0} Q-\vec{u}_{1}$ is perpendicular to \vec{d}. The distance we are looking for will then be $\left\|\vec{u}_{2}\right\|$

$$
\vec{u}=\overrightarrow{P_{0} Q}=\left[\begin{array}{c}
1-2 \\
3-0 \\
-2-(-1)
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right]
$$

So $\quad \vec{u}_{1}=p \operatorname{roj}_{\vec{d}}\left[\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right]=\frac{\vec{u} \cdot \vec{d}}{\|\vec{d}\|^{2}} \vec{d}=\left(\frac{-1-3+0}{1+1+0}\right)\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$

$$
=\frac{-4}{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right]
$$

Thus, $\vec{u}_{2}=\vec{u}-\vec{u}_{1}=\left[\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right]-\left[\begin{array}{c}-2 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
So the distance is $\left\|\vec{u}_{2}\right\|=\sqrt{1^{2}+1^{2}+(-1)^{2}}=\sqrt{3}$.

Which point on the line is closest to Q ?

$$
\vec{P}_{0}+\vec{u}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]+\left[\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]
$$

(Check that the distance from Q to $(0,2,-1)$ is $\sqrt{3}$.)

Planes

How can we describe a plane in \mathbb{R}^{3} ? Note that there is a unique plane perpendicular to a given line, containing a particular point. Thus, those are the two things we will use to describe a plane.

Def: A nonzero vector is normal to a plane, if it is orthogonal to every vector in the plane.

Thus, if $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is a point, and $\vec{h}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \neq \overrightarrow{0}$, then the plane containing P_{0} with normal vector \vec{n} contains the point $P=(x, y, z)$ as long as
$\overrightarrow{P_{0} P}$ is orthogonal to \vec{n}.

$$
\stackrel{\rightharpoonup}{P_{0} P}=\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right] \text {. }
$$

So the plane is the points $P=(x, y, z)$ that satisfy vector $\rightarrow \vec{h} \cdot \overrightarrow{P_{0} P}=0$, i.e. equation $\left.\begin{array}{l}\text { of } a \\ \text { plane } \\ \hline\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \cdot\left[\begin{array}{l}x-x_{0} \\ y-y_{0} \\ z-z_{0}\end{array}\right]=0$ This gives us the following.
scalar equation of a plane:
The place containing the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{h}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \stackrel{\rightharpoonup}{0}$ is given by

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

That is, a point $P=(x, y, z)$ is on the plane if and only if it satisfies this equation.

Ex: The plane with $\vec{n}=\left[\begin{array}{l}2 \\ 3 \\ -7\end{array}\right]$ as a normal vector that contains the point $(5,-2,1)$ has equation

$$
2(x-5)+3(y+2)-7(z-1)=0
$$

Ex: Consider the plane $3 x-2 y=6$. Find a plane parallel to this plane that contains the point $(7,0,5)$.

All parallel planes have the same normal vectors, so we just need to find a normal vector to $3 x-2 y=6$.

The normal vector will just be the coefficients $\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]$. How do we know this? We can rewrite $3 x-2 y=6$ as

$$
\begin{aligned}
& 3 x-2 y-6=0 \\
\Rightarrow & 3 x-2(y+3)+0 \\
& 3=0
\end{aligned}
$$

Thus, the plane we want is

$$
\begin{aligned}
& 3(x-7)-2 y+0 z=0, \text { or } \\
& 3(x-7)-2 y=0
\end{aligned}
$$

Ex: Find shortest distance from the point $P=(2,1,-3)$ to the plane with equation $3 x-y+4 z=1$.

Rewrite equation as $3 x-(y+1)+4 z=0$
Then $P_{0}=(0,-1,0)$ is on the plane and $\vec{h}=\left[\begin{array}{c}3 \\ -4 \\ 4\end{array}\right]$ is a normal vector.

We want to find Q, the point on the plane closest to P.

Solution 1:
Let $\vec{u}=\overrightarrow{P_{0} P}=\left[\begin{array}{c}2-0 \\ 1-(-1) \\ -3-0\end{array}\right]=\left[\begin{array}{c}2 \\ 2 \\ -3\end{array}\right]$.

The projection of \vec{u} onto \vec{n} is:

$$
\begin{aligned}
\vec{u}_{1} & =\operatorname{proj}_{\vec{n}} \vec{u} \\
& =\frac{\vec{n} \cdot \vec{u}}{\|\vec{h}\|^{2}} \vec{h} \\
& =\frac{6-2-12}{9+1+16}\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right] \\
& =\frac{-8}{26}\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right]=\frac{-4}{13}\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right]
\end{aligned}
$$

So the distance is $\left\|\vec{u}_{,}\right\|=\frac{4}{13} \sqrt{9+1+16}$

$$
\begin{aligned}
\vec{u}_{2}=\vec{u}-\vec{u}_{1} & =\left[\begin{array}{c}
2 \\
2 \\
-3
\end{array}\right]+\frac{4}{13}\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right] \\
& =\frac{13}{13}\left[\begin{array}{c}
2 \\
2 \\
-3
\end{array}\right]+\frac{4}{13}\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right] \\
& =\frac{1}{13}\left(\left[\begin{array}{c}
26 \\
26 \\
-39
\end{array}\right]+\left[\begin{array}{c}
12 \\
-4 \\
16
\end{array}\right]\right)=\frac{1}{13}\left[\begin{array}{l}
38 \\
22 \\
-23
\end{array}\right]
\end{aligned}
$$

so to find the point we want,

$$
\vec{P}_{0}+\vec{u}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+\frac{1}{13}\left[\begin{array}{c}
38 \\
22 \\
-23
\end{array}\right]=\frac{1}{13}\left[\begin{array}{c}
0 \\
-13 \\
0
\end{array}\right]+\frac{1}{13}\left[\begin{array}{c}
38 \\
2 \\
-23
\end{array}\right]=\frac{1}{13}\left[\begin{array}{c}
38 \\
9 \\
-23
\end{array}\right]
$$

so the point is $\left(\frac{38}{13}, \frac{9}{13}, \frac{-23}{13}\right)$.

Solution 2: we can just find a line through P perpendicular to the plane and see where it intersects the plane.
\vec{n} will be a direction vector for the line, so a vector equation for the line is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right] \quad \text { or } \quad \begin{aligned}
& x=2+3 t \\
& y=1-t \\
& z=-3+4 t
\end{aligned}
$$

so to find where this meets the plane, we can plug these values for x, y, z into the equation for the plane, to see if There is a t that works:

$$
\begin{aligned}
& \quad 3 x-(y+1)+4 z=0 \\
& 3(2+3 t)-(1-t+1)+4(-3+4 t)=0 \\
& 6+9 t-2+t-12+16 t=0 \\
& \Rightarrow 26 t=8 \\
& \Rightarrow t=\frac{4}{13}
\end{aligned}
$$

Plugging this back into the equation for the
line gives us Q.

$$
\begin{aligned}
Q & =\left(2+\frac{12}{13}, 1-\frac{4}{13},-3+\frac{16}{13}\right) \\
& =\left(\frac{38}{13}, \frac{9}{13}, \frac{-23}{13}\right)
\end{aligned}
$$

we can find the distance by just calculating $\|\overrightarrow{P Q}\|$, which is $\frac{4}{13} \sqrt{26}$.

The cross product

If P, Q, R are distinct points in \mathbb{R}^{3} (not all in a line), then there is a unique plane containing all three points.

How do we find the plane?
 we need to find a normal vector. ie. a vector or thogonal to both $\overrightarrow{P R}$ and $\overrightarrow{P Q}$. The cross product gives us a way to do this.

First we give the standard basis vectors names:

$$
\vec{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \vec{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

There is a trick for defining the cross product:

Def: If $\vec{v}_{1}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$ and $\vec{V}_{2}=\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]$ then the cross product is defined $\vec{V}_{1} \times \vec{V}_{2}=\operatorname{det}\left[\begin{array}{ccc}\vec{i} & x_{1} & x_{2} \\ \vec{j} & y_{1} & y_{2} \\ \vec{k} & z_{1} & z_{2}\end{array}\right]=\left|\begin{array}{ll}y_{1} & y_{2} \\ z_{1} & z_{2}\end{array}\right| \vec{i}-\left|\begin{array}{ll}x_{1} & x_{2} \\ z_{1} & z_{2}\end{array}\right| j+\left|\begin{array}{l}x_{1} \\ x_{2} \\ y_{1} \\ y_{2}\end{array}\right| \vec{k}$

$$
\begin{aligned}
& \begin{array}{l}
\text { expanded }^{\text {along }} \begin{array}{l}
\text { long } \\
\text { first }_{\text {colum }}
\end{array}=\left(y_{1} z_{2}-y_{2} z_{1}\right)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left(x_{1} z_{2}-x_{2} z_{1}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\left(x_{1} y_{2}-x_{2} y_{1}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{array} \\
& =\left[\begin{array}{c}
y_{1} z_{2}-y_{2} z_{1} \\
-\left(x_{1} z_{2}-x_{2} z_{1}\right) \\
x_{1} y_{2}-x_{2} y_{1}
\end{array}\right] \text {. }
\end{aligned}
$$

You can take either of the highlighted formulas as the definition, but the first is easier to remember.

Ex: If $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right]$, then

$$
\begin{aligned}
\vec{V} \times \vec{w}=\operatorname{det}\left[\begin{array}{ccc}
\vec{i} & 1 & 0 \\
\vec{j} & 1 & 3 \\
\vec{k} & 2 & -1
\end{array}\right] & =\left|\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
1 & 0 \\
1 & 3
\end{array}\right| \vec{k} \\
& =-7 \vec{i}-(-1) \vec{j}+3 \vec{k} \\
& =\left[\begin{array}{c}
-7 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

Note that this vector is orthogonal to both \vec{V} and $\vec{\omega}$:

$$
\stackrel{\rightharpoonup}{v} \cdot(\stackrel{\rightharpoonup}{v} \times \stackrel{\rightharpoonup}{w})=-7+1+6=0 \text {, and }
$$

$$
\vec{w} \cdot(\vec{v} \times \vec{w})=0+3-3=0 .
$$

This is true in general:

Theovern: Let \vec{v} and \vec{w} be vectors in \mathbb{R}^{3}.
(1.) $\vec{v} \times \vec{w}$ is a vector orthogonal to \vec{v} and \vec{w}.
(2.) If \vec{v} and \vec{w} are nonzero, then $\vec{v} \times \vec{w}=\overrightarrow{0}$ if and only if \vec{v} and \vec{w} are parallel.
(3.) $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$.

Ex: What is the equation of the plane through $P=(1,3,-2), Q=(1,1,5)$, and $R=(2,-2,3)$?
$\overrightarrow{P Q}=\left[\begin{array}{c}0 \\ -2 \\ 7\end{array}\right]$ and $\overrightarrow{P R}=\left[\begin{array}{c}1 \\ -5 \\ 5\end{array}\right]$ lie in the
plane, so a normal vector to the plane is

$$
\begin{aligned}
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R} & =\operatorname{det}\left[\begin{array}{ccc}
\vec{i} & 0 & 1 \\
\vec{j} & -2 & -5 \\
\vec{k} & 7 & 5
\end{array}\right] \\
& =\left|\begin{array}{cc}
-2 & -5 \\
7 & 5
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
0 & 1 \\
7 & 5
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
0 & 1 \\
-2 & -5
\end{array}\right| \vec{k} \\
& =\left[\begin{array}{c}
2 \\
7 \\
2
\end{array}\right]
\end{aligned}
$$

Thus, the plane has equation

$$
25(x-1)+7(y-3)+2(z+2)=0
$$

Ex: Find the shortest distance between non parallel lines

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

First, we find a plane containing the first line, parallel to the second. Its normal vector must be orthogonal to the direction vectors for each line, so we set it to:

$$
\begin{aligned}
\vec{n}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \times\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] & =\operatorname{det}\left[\begin{array}{ccc}
\vec{i} & 2 & 1 \\
\vec{j} & 0 & 1 \\
\vec{k} & 1 & -1
\end{array}\right] \\
& =\left[\begin{array}{l}
-1 \\
-(-2-1) \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right]
\end{aligned}
$$

since $P_{1}=(1,0,-1)$ is a point on the first like, an equation for the plane is thus

$$
-(x-1)+3 y+2(z+1)=0
$$

Now we just need to find the distance from a point on the second like, e.g. $P_{2}=(3,1,0)$ to the plane.

This length will just be the length of the projection of $\vec{u}=\vec{P}_{1} P_{2}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ onto \vec{n}.

The projection is

$$
\operatorname{proj}_{\vec{n}} \vec{u}=\frac{\vec{u} \cdot \vec{n}}{\|\stackrel{\rightharpoonup}{n}\|^{2}} \stackrel{\rightharpoonup}{n}
$$

which has length

$$
\frac{|\vec{u} \cdot \stackrel{\rightharpoonup}{n}|}{\|\vec{n}\|^{2}}\|\vec{n}\|=\frac{|\vec{u} \cdot \vec{n}|}{\|\vec{n}\|}=\frac{-2+3+2}{\sqrt{1+9+4}}=\frac{3}{\sqrt{14}}
$$

How do we find the points on the two lines where they are closest?

Say the points are A and B on the two lines, respectively. Then

$$
\overrightarrow{A B}=\left[\begin{array}{l}
3+s-(1+2 t) \\
1+s-0 \\
-s-(-1+t)
\end{array}\right]=\left[\begin{array}{l}
2+s-2 t \\
1+s \\
1-s-t
\end{array}\right]
$$

for some s and t.
$\overrightarrow{A B}$ must be or thogonal to both lines, so it should be orthogonal to the respective direction vectors:

$$
\begin{aligned}
& 0=\overrightarrow{A B} \cdot\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=4+2 s-4 t+1-s-t \\
&=5+s-5 t \\
& 0=\overrightarrow{A B} \cdot\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=2+s-2 t+1+s-1+s+t=2+3 s-t
\end{aligned}
$$

So we get $5 t-s=5$

$$
\begin{gathered}
t-3 s=2 \\
\rightarrow\left[\begin{array}{cc|c}
5 & -1 & 5 \\
1 & -3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
0 & 1 & 4 \\
1 & -3 & -5 \\
\hline
\end{array}\right. \\
\rightarrow\left[\begin{array}{ll|l}
6 & 1 & -5 / 14 \\
1 & 0 & \frac{13}{14}
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
0 & 1 & -5 / 14 \\
1 & -3 & 2
\end{array}\right]
\end{gathered}
$$

So $A=\left(\frac{40}{14}, 0, \frac{-1}{14}\right), \quad B=\left(\frac{37}{14}, \frac{9}{14}, \frac{5}{14}\right)$.

Practice problems: 4.2:2ab, 3, 4bd, 5, 9, $10 c d, 11 b c, 12 a$, $13 b, 14 a d e h, 15 b c, 16 b, 19 a, 23 a, 24 a$

